P.S. Kostenlose und neue 1z0-1127-24 Prüfungsfragen sind auf Google Drive freigegeben von ZertFragen verfügbar: https://drive.google.com/open?id=1WBsFj8YirRqOQuKxDiC5bEgskSKhvr-T
Heute, wo das Internet schnell entwickelt, ist es ein übliches Phänomen, Online-Ausbildung zu wählen. ZertFragen ist eine der vielen Online-Ausbildungswebsites. ZertFragen hat langjährige Erfahrungen und kann den Kandidaten die Lernmaterialien von guter Qualität zur Oracle 1z0-1127-24 Zertifizierungsprüfung bieten, um ihre Bedürfnisse abzudecken.
Thema | Einzelheiten |
---|---|
Thema 1 |
|
Thema 2 |
|
Thema 3 |
|
>> Oracle 1z0-1127-24 Examsfragen <<
ZertFragen ist eine Website, mit deren Hilfe Sie die Oracle 1z0-1127-24 Zertifizierungsprüfung schnell bestehen können. Die Fragenkataloge zur Oracle 1z0-1127-24 Zertifizierungsprüfung von ZertFragen werden von den Experten zusammengestellt. Wenn Sie sich noch anstrengend um die Oracle 1z0-1127-24 (Oracle Cloud Infrastructure 2024 Generative AI Professional) Zertifizierungsprüfung bemühen, sollen Sie die Prüfungsunterlagen zur Oracle 1z0-1127-24 Zertifizierungsprüfung von ZertFragen wählen, die Ihnen große Hilfe bei der Prüfungsvorbereitung leisten.
35. Frage
Accuracy in vector databases contributes to the effectiveness of Large Language Models (LLMs) by preserving a specific type of relationship.
What is the nature of these relationships, and why are they crucial for language models?
Antwort: C
Begründung:
Vector databases store word, sentence, or document embeddings that preserve semantic meaning. These embeddings capture relationships between concepts in a multi-dimensional space, improving LLM performance.
Why Semantic Relationships Are Crucial:
Enhance NLP Models: Ensure that words with similar meanings are closely placed in vector space.
Improve Search and Retrieval: Allow LLMs to retrieve conceptually relevant documents even if exact keywords do not match.
Enable Context-Aware Responses: Helps LLMs generate cohesive and meaningful text.
Why Other Options Are Incorrect:
(A) Hierarchical relationships help in database indexing, but they do not drive semantic understanding.
(B) Linear relationships are too simplistic for complex semantic modeling.
(D) Temporal relationships matter for time-based predictions, not semantic retrieval.
🔹 Oracle Generative AI Reference:
Oracle AI integrates vector databases to enhance LLM retrieval accuracy and semantic search capabilities.
36. Frage
Which is NOT a typical use case for LangSmith Evaluators?
Antwort: C
Begründung:
LangSmith Evaluators are not typically used for aligning code readability. Instead, they are used for tasks such as measuring the coherence of generated text, evaluating the factual accuracy of outputs, and detecting bias or toxicity. Evaluators help ensure the quality and reliability of the outputs generated by language models.
Reference
LangSmith documentation on evaluators
Research articles on evaluation metrics for language models
37. Frage
How does the structure of vector databases differ from traditional relational databases?
Antwort: C
Begründung:
Vector databases are specialized database systems designed to store and retrieve high-dimensional vector embeddings. Unlike traditional relational databases (RDBMS), which organize data into tables with rows and columns, vector databases function using mathematical distances in a multi-dimensional vector space.
How Vector Databases Differ:
Optimized for High-Dimensional Spaces: Designed to efficiently search for similar embeddings in large AI-driven applications (e.g., recommendation systems, image search).
Similarity-Based Retrieval: Uses distance metrics such as cosine similarity, Euclidean distance, or Manhattan distance to find the closest vectors.
Indexing Techniques: Implements approximate nearest neighbor (ANN) algorithms to speed up searches.
Why Other Options Are Incorrect:
(A) is incorrect because vector databases are optimized for high-dimensional spaces.
(C) & (D) are incorrect because vector databases do not use row-based or tabular storage.
🔹 Oracle Generative AI Reference:
Oracle integrates vector databases into its AI and ML solutions, enabling efficient similarity searches and AI-driven applications.
38. Frage
When is fine-tuning an appropriate method for customizing a Large Language Model (LLM)?
Antwort: B
Begründung:
Fine-tuning is a technique used to customize an existing Large Language Model (LLM) by training it on domain-specific or task-specific data. Fine-tuning is necessary when:
The LLM's General Knowledge is Insufficient - If the model struggles with a specialized domain (e.g., medical, legal, finance), fine-tuning helps by exposing it to relevant domain-specific data.
Prompt Engineering is Ineffective Due to Large Data Requirements - When a task requires significant custom instructions or examples, fine-tuning is a better approach than prompt engineering, which may have length and complexity limitations.
Improved Accuracy is Required - Fine-tuning helps tailor the model to perform specific tasks more accurately, as it learns from additional training data.
Adapting to a Changing Knowledge Base - Fine-tuning can help update the model with recent trends or company-specific data that were not available during its initial training.
🔹 Oracle Generative AI Reference:
Oracle supports LLM fine-tuning within its AI ecosystem, allowing enterprises to optimize pre-trained AI models for industry-specific applications.
39. Frage
How does a presence penalty function in language model generation?
Antwort: A
Begründung:
A presence penalty is a mechanism used in language model generation to discourage repetition of words or phrases in generated text. This is crucial for improving diversity in AI-generated responses.
How It Works:
The presence penalty increases the loss associated with words that have already appeared in the output.
The model is less likely to generate the same word multiple times, leading to more diverse responses.
Unlike frequency penalties, which increase with repeated occurrences, presence penalties apply as soon as a word appears.
Key Use Cases:
Avoiding redundant phrases in AI-generated text.
Enhancing creative writing applications where repetitive wording is undesirable.
Making chatbot conversations more engaging and natural.
🔹 Oracle Generative AI Reference:
Oracle's generative AI models implement presence and frequency penalties as part of their fine-tuning and model inference processes to balance text coherence and diversity.
40. Frage
......
Mit den Schulungsunterlagen zur Oracle 1z0-1127-24 Zertifizierungsprüfung von ZertFragen würden Sie eine glänzende Zukunft haben und Erfolg erzielen. Sie werden Sie nicht nur zum Erfolg führen, sondern auch Ihre Fähigkeiten in der IT-Branche effizient entfalten. Sie umfassen zahlreiche Wissensgebiete und können Ihre Kenntnisse verbessern. Wenn Sie noch warten oder zögern, denn Sie wissen nicht, wie man die Oracle 1z0-1127-24 Zertifizierungsprüfung bestehen kann, keine Sorge. Die Schulungsunterlagen zur Oracle 1z0-1127-24 Zertifizierungsprüfung von ZertFragen wird alle Ihren Probleme lösen.
1z0-1127-24 Lernhilfe: https://www.zertfragen.com/1z0-1127-24_prufung.html
2025 Die neuesten ZertFragen 1z0-1127-24 PDF-Versionen Prüfungsfragen und 1z0-1127-24 Fragen und Antworten sind kostenlos verfügbar: https://drive.google.com/open?id=1WBsFj8YirRqOQuKxDiC5bEgskSKhvr-T